Velkomoravská náušnice pod mikroskopem
Vladimír Úštěhal, Marie Plačková

Nejprv měli a co do pranosti nejdrážňující techniku zdobení Kovových předmětů byly od nepočetní granulace a filigránů. Granulace je zdobení kovovými kulíčkami (granum - zrnko) se stávajícími na rovném podkladu do linek, plošných obrázků, ornamentů či figur. Filigrán je zdobením šemíčkami kovovými vláken či drátítk, hlavňovitými, vysroubovávanými nebo zrněnými, často různě vzájemně zkružovanými a splétanými, a poté tvarovanými do rozmanitých vznaků.


Metafyzická a prvková analýza náušnice

Analyzovaná náušnice, zdobená granulací, vybraná v roce 1993 ve sbírce byvalého Archeologického ústavu ČSAV v Brně, pochází z lokality Staré Město. V tvarě stejně zdobené třiřízová pár označený evidenční čísly 103 795 a 103 797. Je zvážena a analyzing obr. 1. Cílem analýzy bylo stanovit formy potrubí náušnice dřev a části použitého kovu či stříbrného výrobě, postup výroby jednotlivých částí a rozsah korozního poškození pro příslušné restaurace. Metody výzkumu byly použity vůči elektronové mikroskopie JXA-840A a japonecké firmě JEOL. Spolu s doplňky pro lokální analýzu prvkového složení a to energové disperzní spektrometrem anglické firmy LINK, současně složí k analýze prvkové.


Technologie zhotovení náušnice

Na obr. 2 je jedna ze tří vajíček, či peril náušnice. Je důležité uvažovat v důsledku své poloviny tří tříčítě oboustranného, oboustranného a zápovědí stříbrného obtížího. Ke zhotovení matrice tvarovaného stříbrného a tvarovaného stříbrného stroje tvrdého dřeva.
Povrch vejčíka je zdoben trojhranníkovými sestavami ze tří nebo patnácti granul. Podkladová pravidelná větší sestavy je tvorivá a rozměrová štěrka posetých granul. Proměřené náhodně zvoleném patnáctí granul (tabl. 3) bylo stanoveno, že jejich průměr minimálně je 0,576 mm, maximální 0,697 mm, střední 0,654 mm, se standardní odchylek 0,034 mm. Podstane-li s měrnou hmotností lehce stříbra 10,48 g/cm³ (pro stříbro tvářené je toto hodnota 10,55 g/cm³), pak střední hmotnost granul je 0,012 g. Velikost granul je srovnatelná s velikostí granul na špercích z Krále, kde byla asi 0,5 mm. Granule na etruských špercích, představujících v tělo technologie nevyšší dosaženou mez, byly mérou kolem 0,2 mm, což je hodnota na hranici rozlišovací schopnosti lidského oka.

Čtvrtek č. 3 soudce potvrdí, že ke křížení granul v její vejčík nebyla použita žádná příslušná páska. Ta by tátí nežadoucím způsobem smotla a zaplnila volné prostory mezi granulami a estetický účin šperku by byl značnou měrou zhoršen. Dále spoje mezi dvěma granulami je na obr. 4. Nezávadu tak vlastně bylo vznikávání spojení granul a spojování s nosným podkladem provedeno. Granule byla na vejčíku fyzicky zraněny plynky (jeho se používá přirozeně stagnátní nebo organické lepidlo). Pak následoval ohřev celé sestavy na žávku dřevěného uhlí nebo ohřev plamenem smíšeným uchováváním. Čím štěrba má teplotu tavení 940 °C, což je teplota téhož způsobu ohřevu smíšenou dvačtyřicítka. Průměr se přednostně natáčoval povrch granule, nikoliv celý její objem, což bylo částečně způsobeno přístupem tepla, avšak především proto, že teplota tání povrchové vstřícné granule byla snížena prvkem prvků, který se do povrchu granule rozpuští při její přípravě. Tímto prvkem v velmi nižším obsahu byl uhlík, neboť prostřednictvím přípravu granule byla s neváhavou pravidelností postupně podložka z kosu dřevěného uhlí nebo zásyp dřevouhelného prachu. V případě granul připravovaných ze zlata se do dřevouhelného prachu vtrhává malé množství směsivých obsahujících již. Ta se při pájení granul na podložku redukce utlumí, v očekávání organického lepidla či přírodního lepidla, rozpuštění se v povrchu granule a snížení jejich teploty tání zlatá granule se pak povrchově natáčí dvě než samotný objem a jeho zbarvení se odrazí odběrům organického plamenem.

Stopy granul na ozdobě šperku z vejčíka a odkryvováno měkkého spoje mezi granulami ukazují, že kontaktní plošky těchto spojů mají střední průměr 0,26 mm, což je 2,5 krát menší než střední průměr granul. Mezi granulami byla zbyvající ochrana poměrně velký nezaplývající prostor, příspěvivý k jemnosti stavby celého šperku.

K ověření, s jakými potížemi se asi potýkali dávní klenotní při přípravě granul a jak takové technologické účinky vytvářejí, poskytl následující experimenty. Granule byly naopak zhotovovány postupným odtvářejícím stříbrného drátu. Tento postup se však ukázal velmi pracný, pomočný a obtížně umožňující dodržet stálou stejnou velikost granul. Druhý pokus byl vhodnější. Stejné alouše kousky sekané nebo stříbřené ze štěrbového drátu nebo lepce byly vloženy do menšího zvázněného kelímk a zasypány dřevouhelným prachem. Při ohřevu nad teplotu tání stříbra se z těchto kousků vytvořily kapky, které při písnění povrchového napětí zůstaly na doku, doku, doku, doku, doku, doku, doku, doku, doku. Při malém spojování zásypu, vůbec kapky mohou být velké a dostatečně plněné v každém případe, ale takový provoz spojování lze pokusně stanovit mnohem jednodušeji a co do výsledku spolehlivěji je příprava granul na ploché zvázněné desítky, například z vypalování hliny, opatřené doly, které mohou být malé a nejmeněního tvaru a rozměrů. Fasková stříbrná drát vkládaná do doly jde teprve vzniku dřevouhelného prachu jen zasypány. Takto lze jednorázově připravit značné množství kuliček rozměrové natařit, které by se jejich další tříštění nemělo způsobit.
Obr. 1 Fragment střízové nástroje z lokality Staré Město.

Obr. 2 Dve pelíčko-perle je složeno ze dvou polovin a zdobeno granulací. Fasovací electrónový mikroskop REM.
Obr. 3 Sestava granulí připojených k povrchu vajíčka-perly pojením bez příčkovné půlkry REM

Obr. 4 Detail spoje mezi granulemi REM